Competitive Programming Learning Path

Contributers

Vedansh Priyadarshi
vedansh.priyadarshi@gmail.com
Gagandeep Singh
czgdp1807@gmail.com

An open initiative by

CodeZoned

mailto:vedansh.priyadarshi@gmail.com
mailto:czgdp1807@gmail.com

Abstract

The thing that is unique about this document is that this will contain everything required for
competitive programming. People generally have confusion about where to start. We are
completely self learned. So, we know where students generally face issues during beginning.
This document will cover every topics required in competitive programming. We only assume
that you know basic mathematics. The things will eventually get easy as you will move forward
in your learning journey. People generally says everything is available on the web for free.
Obviously, this is true. But, you need to know form where to learn. We will fulfill that gap
through this document. Just follow the instructions step by step. We will also solve lot of good
problems. We will also provide you some books at last, in case you want to delve deep.

Is this document for you?

Are you interested in problem solving or coding or competitions or mathematics?

If your answer is yes, get ready to be “CodeZoned”. Make sure to contribute on our Github
repository. You can at least star our document or make your first pull request through our
repository.

If you are senior, experienced in competitive programming, we urge you to help younger

budding programmers by contributing to this document. You can also send your suggestions
directly to us anytime.

Disclaimer

All the documents, books, courses and links provided in this document are freely available on
the web. We are just helping people find them easily.

Introduction

What is Competitive Programming?

List of Programming Contests.

Which programming language is best? See Google Code Jam stats
here. Let me tell you, C++ is the best language for competitive
programming. Stick with it. JAVA is also good. Some people say
language has no effect on code. This depends on person to person.
Advantages of C++ in competitive programming: See the topic Python
v/s C in the “LinksPDF.pdf” file in our repository.

Learn C++ from Bucky of The Boston School. Solve basic problems on
Codeabbey. Now if you have completed this step. Solve some more
problems on Project Euler, not all. Now you are ready to go.

Programming Techniques

Recursive algorithms (video) (topcoder) (problems) (more problems)
(backtracking and some problems)
Bit Manipulation (read) (solve) (tricks) (book)

Time Complexity

BigO Notation (read) (advanced read) (Khan Academy) (cheat sheet)
(misconceptions)
Maximum subarray, N queens problem

Sorting and Searching

Sorting (visualize) (intution) (read) (Sorting in C++)
(Implementation) (Problems) Read only Bubble, Merge, Counting
sort and sorting in O(n log n) time.

Searching (visualize) (read and solve) (searching in C++)

An amazing playlist of searching and sorting.

Sweep Line algorithm (topcoder)

Event scheduling problem (wiki) (video)

Tasks and Deadlines problem (read)

https://en.wikipedia.org/wiki/Competitive_programming
https://en.wikipedia.org/wiki/Competitive_programming
https://en.wikipedia.org/wiki/Competitive_programming
https://en.wikipedia.org/wiki/List_of_programming_contests
https://en.wikipedia.org/wiki/List_of_programming_contests
https://en.wikipedia.org/wiki/Google_Code_Jam
https://www.go-hero.net/jam/17/languages
https://stackoverflow.com/questions/3380993/why-do-programming-competition-contestants-use-c-and-java
https://www.youtube.com/playlist?list=PLAE85DE8440AA6B83
http://www.codeabbey.com/
https://projecteuler.net/
https://www.khanacademy.org/computing/computer-science/algorithms/recursive-algorithms/a/recursion
https://www.youtube.com/watch?v=mz6tAJMVmfM
https://www.topcoder.com/community/data-science/data-science-tutorials/an-introduction-to-recursion-part-1/
https://www.hackerrank.com/domains/fp/fp-recursion
https://www.geeksforgeeks.org/practice-questions-for-recursion/
https://en.wikipedia.org/wiki/Backtracking
https://www.geeksforgeeks.org/backtracking-algorithms/
https://www.youtube.com/watch?v=NLKQEOgBAnw
https://en.wikipedia.org/wiki/Bit_manipulation
https://www.hackerrank.com/domains/algorithms/bit-manipulation
https://www.geeksforgeeks.org/bits-manipulation-important-tactics/
https://github.com/czgdp1807/resourcesandproblems/blob/master/Hacker's%20Delight%20bit%20tricks2nd%20Edition.pdf
https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
https://en.wikipedia.org/wiki/Big_O_notation
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-o-notation
http://bigocheatsheet.com/
http://ssp.impulsetrain.com/big-o.html
https://en.wikipedia.org/wiki/Maximum_subarray_problem
https://www.geeksforgeeks.org/backtracking-set-3-n-queen-problem/
http://sorting.at/
https://betterexplained.com/articles/sorting-algorithms/
https://brilliant.org/wiki/sorting-algorithms/
http://www.cplusplus.com/reference/algorithm/sort/
https://en.wikibooks.org/wiki/Algorithm_Implementation/Sorting
https://www.geeksforgeeks.org/sorting-algorithms/
http://www.algomation.com/search?q=searching
https://www.geeksforgeeks.org/searching-algorithms/
http://www.cplusplus.com/reference/algorithm/search/
https://www.youtube.com/playlist?list=PLx3witYKF_5L3YKvXS3p3da-rqwghvW_Q
https://www.topcoder.com/community/data-science/data-science-tutorials/line-sweep-algorithms/
https://en.wikibooks.org/wiki/Algorithms/Greedy_Algorithms#Event_Scheduling_Problem
https://www.youtube.com/watch?v=Hq4VrKqAb88
http://www.techiedelight.com/job-sequencing-problem-deadlines/

Data Structures

Dynamic Arrays (vectors read and watch) (iterators and ranges)
(stacks, queues and deques watch and pdf)

Set Structure (set and unordered_set difference, read, watch) (maps
read and watch) (priority queue read and watch) (policy based
structures read)

See BigO Cheatsheet for data structures comparison.

Visualisation of different data structures.

Dynamic Programming

Highly recommended watch (1 and 2) and read .
Intution (read all parts).

Longest increasing subsequence problem (watch).
Paths on a grid problem (watch).

Knapsack Problem (watch this or this)

Subset sum problem (watch)

Watch this full playlist by Geeksforgeeks.

Graph Algorithms

Basics of graph. Watch here or here or from Humblefool’s
mycodeschool(part basics and properties[highly recommended])
Graph representation using edge list, adjacency matrix, adjacency
lists and incidence matrix.

Graph Transversal (BFS & DFS watch, visualize and
implementation[BFS & DFS]). Problems on BFS & DFS.

Strongly Connected Components

Biconnectivity, Tarzan’s algorithm(visualization) for finding bridges.
Dijkstra’s Algorithm (watch, visualize and implement [example])
Bellman Ford algorithm (watch, visualize with example)
Floyd—Warshall Algorithm (watch, visualize (another) and implement
and on undirected path.

Directed Acyclic Graphs (Topological Sort and implementation)
Dynamic Programming for shortest path.

Minimum Spanning Trees (watch). Prim and Kruskal Visualization.

https://medium.com/the-renaissance-developer/c-standard-template-library-stl-vector-a-pretty-simple-guide-d2b64184d50b
https://www.youtube.com/watch?v=PocJ5jXv8No
https://arne-mertz.de/2017/01/ranges-stl-next-level/
https://www.youtube.com/watch?v=IITnvmnfi_Y
http://www.cs.ukzn.ac.za/~hughm/ds/slides/20-stacks-queues-deques.pdf
https://stackoverflow.com/questions/16075890/what-is-the-difference-between-set-and-unordered-set-in-c
http://cppisland.com/?p=457
https://www.youtube.com/watch?v=PKE_Y9_gHMo
https://www.hackerrank.com/challenges/cpp-maps/problem
https://www.youtube.com/watch?v=k-nSyfh6jr8
https://en.wikipedia.org/wiki/Priority_queue
https://www.youtube.com/watch?v=wptevk0bshY
http://codeforces.com/blog/entry/11080
http://bigocheatsheet.com/
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
https://www.youtube.com/watch?v=P8Xa2BitN3I
https://www.youtube.com/watch?v=OQ5jsbhAv_M
https://www.topcoder.com/community/data-science/data-science-tutorials/dynamic-programming-from-novice-to-advanced/
http://thinking-intuitively.blogspot.in/2011/03/dynamic-programming.html
https://www.youtube.com/watch?v=4fQJGoeW5VE
https://www.youtube.com/watch?v=M8BYckxI8_U
https://www.youtube.com/watch?v=EH6h7WA7sDw
https://www.youtube.com/watch?v=xOlhR_2QCXY
https://www.youtube.com/watch?v=s6FhG--P7z0
https://www.youtube.com/playlist?list=PLqM7alHXFySGbXhWx7sBJEwY2DnhDjmxm
https://www.youtube.com/watch?v=ZHqQDA3be-k
https://www.youtube.com/watch?v=HmQR8Xy9DeM
https://www.youtube.com/watch?v=gXgEDyodOJU&index=39&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&t=0s
https://www.youtube.com/watch?v=AfYqN3fGapc&index=40&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&t=0s
https://www.youtube.com/watch?v=ZdY1Fp9dKzs&index=41&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&t=0s
https://www.youtube.com/watch?v=ZdY1Fp9dKzs&index=41&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&t=0s
https://www.youtube.com/watch?v=k1wraWzqtvQ&index=43&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&t=0s
https://www.youtube.com/watch?v=k1wraWzqtvQ&index=43&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&t=0s
https://en.wikipedia.org/wiki/Incidence_matrix
https://www.youtube.com/watch?v=zaBhtODEL0w
https://visualgo.net/en/dfsbfs?slide=1
https://brilliant.org/wiki/breadth-first-search-bfs/
https://brilliant.org/wiki/depth-first-search-dfs/
http://www.spoj.com/problems/tag/bfs
http://www.spoj.com/problems/tag/dfs
https://www.youtube.com/watch?v=5wFyZJ8yH9Q
https://www.youtube.com/watch?v=UTgfSPQpJDw
https://www.youtube.com/watch?v=zxa4ZXnbMVw
https://commons.wikimedia.org/wiki/File:Tarjan%27s_Algorithm_Animation.gif
https://www.youtube.com/watch?v=GazC3A4OQTE
https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
https://www.youtube.com/watch?v=d6ZFqjH63vo
https://www.youtube.com/watch?v=0nVYi3o161A
https://www.youtube.com/watch?v=lyw4FaxrwHg
https://www-m9.ma.tum.de/graph-algorithms/spp-bellman-ford/index_en.html
https://www.youtube.com/watch?v=KQ9zlKZ5Rzc
https://www.youtube.com/watch?v=VoNMulNisiU
https://www.cs.usfca.edu/~galles/visualization/Floyd.html
https://rosettacode.org/wiki/Floyd-Warshall_algorithm
https://www.youtube.com/watch?v=B06q2yjr-Cc
https://www.youtube.com/watch?v=eL-KzMXSXXI
https://en.wikipedia.org/wiki/Topological_sorting
https://www.youtube.com/watch?v=NbsnlRMrOOw
https://www.youtube.com/watch?v=tKwnms5iRBU
https://visualgo.net/en/mst

e FEuler’s tour algorithm.
e Maximum flow using Ford Fulkerson Method.
Algorithms Design Topics

e Bit-Parallel Algorithms (Hamming Distances), (Counting Subgrids)
e Amortized Analysis
e Ternary Search (read and implement)

Tree Algorithms

Introduction (mycodeschool)

Tree transversal (Binary tree transversal) (DP) (wiki)
Diameter of the binary tree (in O(n) time) (watch)
Lowest common ancestor in tree on O(1). (watch)
Centroid decomposition (watch) (read) (problems)
Heavy light decomposition (advanced) (read)

Mathematics

e Read whole book ‘Elementary Number Theory with Programming’.
e Watch this if you have less time. A video by O’Reilly.
e Game theory intro. NIM game. Spragur-Grundy theorem.(watch)

Advanced Graph Algorithms

e Strong Connectivity - Kosaraju’s Algorithm (wiki), 2SAT Problem
(watch approx. 2hr)

e Complete Paths - Eulerian Paths (basics) (wiki), Hamiltonian Path
(basics) (wiki), Applications - De Bruijn sequence(watch), Knight’s
tour(numberphile)

e Maximum Flows - (MIT) (Ford—Fulkerson Algorithm)

Computational Geometry

Graham Scan algorithm (watch) (read) (visualize)
Online construction of 3D convex hull. (read)
Bentley Ottomann algorithm (read)

Geometric sweep algorithms (watch)

Suggested Book

https://www.youtube.com/watch?v=1V_6nUUNoms
https://www.youtube.com/watch?v=sSgI072tN5k
https://www.youtube.com/watch?v=4ZqIddyXK9o
https://www.youtube.com/watch?v=M8BYckxI8_U
https://www.youtube.com/watch?v=3MpzavN3Mco
https://en.wikipedia.org/wiki/Ternary_search
https://www.youtube.com/watch?v=JaO8cU9WlWg
https://www.youtube.com/watch?v=qH6yxkw0u78&t=0s&list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P&index=26
https://www.youtube.com/playlist?list=PL2_aWCzGMAwI3W_JlcBbtYTwiQSsOTa6P
https://www.youtube.com/watch?v=gm8DUJJhmY4
https://www.youtube.com/playlist?list=PLfBJlB6T2eOsET4tlfcLs7oXR7kCyt1xc
https://en.wikipedia.org/wiki/Tree_traversal
https://www.geeksforgeeks.org/diameter-of-a-binary-tree-in-on-a-new-method/
https://www.geeksforgeeks.org/diameter-of-a-binary-tree-in-on-a-new-method/
https://www.geeksforgeeks.org/diameter-of-a-binary-tree-in-on-a-new-method/
https://www.youtube.com/watch?v=aqfTvKWWHWI
https://www.youtube.com/watch?v=HeeyUZmaZg0
https://www.youtube.com/watch?v=-Lgda-6_AiY
https://www.geeksforgeeks.org/centroid-decomposition-of-tree/
http://codeforces.com/blog/entry/52492
https://www.youtube.com/watch?v=nDLe6_sPSfs
https://wcipeg.com/wiki/Heavy-light_decomposition
https://github.com/czgdp1807/resourcesandproblems/blob/master/Elementary%20Number%20Theory%20with%20Programming.pdf
https://www.youtube.com/watch?v=CCr-p1tInwQ
https://www.youtube.com/watch?v=JT8ZuJey3s0
https://www.youtube.com/watch?v=niMjxNtiuu8
https://www.youtube.com/watch?v=GRlGknQEOW8
https://www.youtube.com/watch?v=9Wbej7Fy5Lw
https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm
https://www.youtube.com/watch?v=0nNYy3rltgA
https://www.youtube.com/watch?v=AwsMTEl79wI
https://en.wikipedia.org/wiki/Eulerian_path
https://www.youtube.com/watch?v=9Fdn17CNy2U
https://en.wikipedia.org/wiki/Hamiltonian_path
https://www.youtube.com/watch?v=iPLQgXUiU14
https://www.youtube.com/watch?v=ab_dY3dZFHM
https://www.youtube.com/watch?v=VYZGlgzr_As
https://www.youtube.com/watch?v=Tl90tNtKvxs
https://www.youtube.com/watch?v=ZFxFKABnXN0
https://en.wikipedia.org/wiki/Graham_scan
http://www.algomation.com/algorithm/graham-scan-convex-hull
https://pdfs.semanticscholar.org/d791/e356bff946d9601a4d9997de506db3af7967.pdf
https://people.scs.carleton.ca/~michiel/lecturenotes/ALGGEOM/bentley-ottmann.pdf
http://geomalgorithms.com/a09-_intersect-3.html
https://www.youtube.com/watch?v=gXn2yUHpvRE
https://github.com/czgdp1807/resourcesandproblems/blob/master/Computational%20Geometry%20Algorithms%20and%20Applications%2C%203rd%20Ed%20-%20de%20Berg%20et%20al.pdf

String Algorithms

e Knuth Morris Pratt (watch) (visualize) (read)
e Aho Corasick (watch) (MIT) (visualize)

e Suffix Arrays (full playlist)

e Suffix Trees (intro) (Ukkenon’s algorithm) (Tandem’s Repeats)

https://www.youtube.com/watch?v=2ogqPWJSftE
https://people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.html
https://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
https://www.youtube.com/watch?v=IjWwuP8CbH4
https://www.youtube.com/watch?v=NinWEPPrkDQ
http://jovilab.sinaapp.com/visualization/algorithms/strings/aho-corasick
https://www.youtube.com/playlist?list=PLDV1Zeh2NRsCQ_Educ7GCNs3mvzpXhHW5
https://www.youtube.com/watch?v=xSOxtYYjM0A
https://www.youtube.com/watch?v=WbLKFzqvacg
https://www.youtube.com/watch?v=w4L_duJf6Eo

Books Recommendation

Algorithm Design by Jon Kleinberg, Eva Tardos
[Anany Levitin, Maria Levitin]Algorithmic Puzzles
[Halim] Competitive programming 3

Algorithms and programming problems and solutions
Schaums discrete maths

Elementary Number Theory with Programming
Computational Geometry Algorithms and Applications
[Ian Parberry]Problems on algorithms

Click the book and download. Again note that, we found everything on the
internet and just sharing with you.

https://github.com/czgdp1807/resourcesandproblems/blob/master/Algorithm%20Design%20by%20Jon%20Kleinberg%2C%20Eva%20Tardos.pdf
https://github.com/czgdp1807/resourcesandproblems/blob/master/%5BAnany_Levitin%2C_Maria_Levitin%5D_Algorithmic_Puzzles(BookFi).pdf
https://github.com/czgdp1807/resourcesandproblems/blob/master/%5BHalim%5D_Competitive_programming_3(b-ok.org).pdf
https://github.com/czgdp1807/resourcesandproblems/blob/master/algorithms_and_programming__problems_and_solutions__second_edition.pdf
https://github.com/czgdp1807/resourcesandproblems/blob/master/Schaums%20discrete%20maths.pdf
https://github.com/czgdp1807/resourcesandproblems/blob/master/Elementary%20Number%20Theory%20with%20Programming.pdf
https://github.com/czgdp1807/resourcesandproblems/blob/master/Computational%20Geometry%20Algorithms%20and%20Applications%2C%203rd%20Ed%20-%20de%20Berg%20et%20al.pdf
https://github.com/czgdp1807/resourcesandproblems/blob/master/%5BIan_Parberry%5D_Problems_on_algorithms(BookFi).pdf

